Title of article :
Approach to equilibrium of particles diffusing on curved surfaces
Author/Authors :
D. Plewczy ski، نويسنده , , R. Ho yst، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
8
From page :
371
To page :
378
Abstract :
We present a simple numerical analysis of the diffusion on a curved surface given by the equation φ(r)=0 in a finite domain D R3. The first non-vanishing eigenvalue of the Beltrami–Laplace operator with the reflecting boundary conditions is determined in our simulations for the P, D, G, S, S1 and I-WP, nodal periodic surfaces, where D is their respective cubic unit cell. We observe that the first eigenvalue for the surfaces of simple topology (P,D,G,I-WP) is smaller than for the surfaces of complex topology (S,S1).
Journal title :
Physica A Statistical Mechanics and its Applications
Serial Year :
2001
Journal title :
Physica A Statistical Mechanics and its Applications
Record number :
867198
Link To Document :
بازگشت