Title of article :
Zeroes of the Jones polynomial
Author/Authors :
F. Y. Wu، نويسنده , , J. Wang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Abstract :
We study the distribution of zeroes of the Jones polynomial VK(t) for a knot K. We have computed numerically the roots of the Jones polynomial for all prime knots with N 10 crossings, and found the zeroes scattered about the unit circle t=1 with the average distance to the circle approaching a nonzero value as N increases. For torus knots of the type (m,n) we show that all zeroes lie on the unit circle with a uniform density in the limit of either m or n→∞, a fact confirmed by our numerical findings. We have also elucidated the relation connecting the Jones polynomial with the Potts model, and used this relation to derive the Jones polynomial for a repeating chain knot with 3n crossings for general n. It is found that zeroes of its Jones polynomial lie on three closed curves centered about the points 1,i and −i. In addition, there are two isolated zeroes located one each near the points t±=e±2πi/3 at a distance of the order of 3−(n+2)/2. Closed-form expressions are deduced for the closed curves in the limit of n→∞.
Journal title :
Physica A Statistical Mechanics and its Applications
Journal title :
Physica A Statistical Mechanics and its Applications