Title of article :
Convective dispersion without molecular diffusion
Author/Authors :
Kevin D. Dorfman، نويسنده , , Howard Brenner.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Abstract :
A method-of-moments scheme is invoked to compute the asymptotic, long-time mean (or composite) velocity and dispersivity (effective diffusivity) of a two-state particle undergoing one-dimensional convective–diffusive motion accompanied by a reversible linear transition (“chemical reaction” or “change in phase”) between these states. The instantaneous state-specific particle velocity is assumed to depend only upon the instantaneous state of the particle, and the transition between states is assumed to be governed by spatially independent, first-order kinetics. Remarkably, even in the absence of molecular diffusion, the average transport of the “composite” particle exhibits gaussian diffusive behavior in the long-time limit, owing to the effectively stochastic nature of the overall transport phenomena induced by the interstate transition. The asymptotic results obtained are compared with numerical computations.
Journal title :
Physica A Statistical Mechanics and its Applications
Journal title :
Physica A Statistical Mechanics and its Applications