• Title of article

    A stochastic evolutionary model exhibiting power-law behaviour with an exponential cutoff

  • Author/Authors

    Trevor Fenner، نويسنده , , Mark Levene، نويسنده , , George Loizou، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2005
  • Pages
    16
  • From page
    641
  • To page
    656
  • Abstract
    Recently several authors have proposed stochastic evolutionary models for the growth of complex networks that give rise to power-law distributions. These models are based on the notion of preferential attachment leading to the “rich get richer” phenomenon. Despite the generality of the proposed stochastic models, there are still some unexplained phenomena, which may arise due to the limited size of networks such as protein and e-mail networks. Such networks may in fact exhibit an exponential cutoff in the power-law scaling, although this cutoff may only be observable in the tail of the distribution for extremely large networks. We propose a modification of the basic stochastic evolutionary model, so that after a node is chosen preferentially, say according to the number of its inlinks, there is a small probability that this node will be discarded. We show that as a result of this modification, by viewing the stochastic process in terms of an urn transfer model, we obtain a power-law distribution with an exponential cutoff. Unlike many other models, the current model can capture instances where the exponent of the distribution is less than or equal to two. As a proof of concept, we demonstrate the consistency of our model by analysing a yeast protein interaction network, the distribution of which is known to follow a power law with an exponential cutoff.
  • Journal title
    Physica A Statistical Mechanics and its Applications
  • Serial Year
    2005
  • Journal title
    Physica A Statistical Mechanics and its Applications
  • Record number

    870345