Title of article :
Geometry of financial markets—Towards information theory model of markets
Author/Authors :
Edward W. Piotrowski، نويسنده , , Jan S?adkowski، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
7
From page :
228
To page :
234
Abstract :
Most parameters used to describe states and dynamics of financial market depend on proportions of the appropriate variables rather than on their actual values. Therefore, projective geometry seems to be the correct language to describe the theater of financial activities. We suppose that the objects of interest of agents, called here baskets, form a vector space over the reals. A portfolio is defined as an equivalence class of baskets containing assets in the same proportions. Therefore portfolios form a projective space. Cross ratios, being invariants of projective maps, form key structures in the proposed model. Quotation with respect to an asset Ξ (i.e. in units of Ξ) is given by linear maps. Among various types of metrics that have financial interpretation, the min–max metric on the space of quotations can be introduced. This metric has an interesting interpretation in terms of rates of return. It can be generalized so that to incorporate a new numerical parameter (called temperature) that describes agentʹs lack of knowledge about the state of the market. In a dual way, a metric on the space of market quotation is defined. In addition, one can define an interesting metric structure on the space of portfolios/quotation that is invariant with respect to hyperbolic (Lorentz) symmetries of the space of portfolios. The introduced formalism opens new interesting and possibly fruitful fields of research.
Journal title :
Physica A Statistical Mechanics and its Applications
Serial Year :
2007
Journal title :
Physica A Statistical Mechanics and its Applications
Record number :
871812
Link To Document :
بازگشت