Title of article :
Criticality in the randomness-induced second-order phase transition of the triangular Ising antiferromagnet with nearest- and next-nearest-neighbor interactions
Author/Authors :
N.G. Fytas، نويسنده , , A. Malakis، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Abstract :
Using a Wang–Landau entropic sampling scheme, we investigate the effects of quenched bond randomness on a particular case of a triangular Ising model with nearest- (Jnn) and next-nearest-neighbor (Jnnn) antiferromagnetic interactions. We consider the case R=Jnnn/Jnn=1, for which the pure model is known to have a columnar ground state where rows of nearest-neighbor spins up and down alternate and undergo a weak first-order phase transition from the ordered to the paramagnetic state. With the introduction of quenched bond randomness we observe the effects signaling the expected conversion of the first-order phase transition to a second-order phase transition and using the Lee–Kosterlitz method, we quantitatively verify this conversion. The emerging, under random bonds, continuous transition shows a strongly saturating specific heat behavior, corresponding to a negative exponent α, and belongs to a new distinctive universality class with ν=1.135(11), γ/ν=1.744(9), and β/ν=0.124(8). Thus, our results for the critical exponents support an extensive but weak universality and the emerged continuous transition has the same magnetic critical exponent (but a different thermal critical exponent) as a wide variety of two-dimensional (2d) systems without and with quenched disorder.
Journal title :
Physica A Statistical Mechanics and its Applications
Journal title :
Physica A Statistical Mechanics and its Applications