Title of article :
Discrete growth models on deterministic fractal substrate
Author/Authors :
Gang Tang، نويسنده , , Zhipeng Xun، نويسنده , , Rongji Wen، نويسنده , , Kui Han، نويسنده , , Hui Xia، نويسنده , , Dapeng Hao، نويسنده , , Wei Zhou، نويسنده , , Xiquan Yang، نويسنده , , Yuling Chen، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
6
From page :
4552
To page :
4557
Abstract :
The growth of the modified Family model and the Etching model on the Sierpinski carpet is studied by means of numerical simulations. The evolving interface of the aggregates is described by the well-established Family–Vicsek dynamic scaling approach. The results of the modified Family model prove the universality of the fractional Langevin equation introduced by Lee and Kim [S.B. Lee, J.M. Kim, Phys. Rev. E 80 (2009) 021101]. The Etching model also shows good scaling behavior. We conjecture that the systematic deviations of the data found in the ballistic deposition [C.M. Horowitz, F. Romá, E.V. Albano, Phys. Rev. E 78 (2008) 061118] may be due to the finite-size effects of the Ballistic Deposition model.
Journal title :
Physica A Statistical Mechanics and its Applications
Serial Year :
2010
Journal title :
Physica A Statistical Mechanics and its Applications
Record number :
873894
Link To Document :
بازگشت