Title of article :
Using metrics from complex networks to evaluate machine translation
Author/Authors :
D.R. Amancio، نويسنده , , M.G.V. Nunes، نويسنده , , O.N. Oliveira Jr.، نويسنده , , T.A.S. Pardo، نويسنده , , L. Antiqueira، نويسنده , , L. da F. Costa، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
12
From page :
131
To page :
142
Abstract :
Establishing metrics to assess machine translation (MT) systems automatically is now crucial owing to the widespread use of MT over the web. In this study we show that such evaluation can be done by modeling text as complex networks. Specifically, we extend our previous work by employing additional metrics of complex networks, whose results were used as input for machine learning methods and allowed MT texts of distinct qualities to be distinguished. Also shown is that the node-to-node mapping between source and target texts (English–Portuguese and Spanish–Portuguese pairs) can be improved by adding further hierarchical levels for the metrics out-degree, in-degree, hierarchical common degree, cluster coefficient, inter-ring degree, intra-ring degree and convergence ratio. The results presented here amount to a proof-of-principle that the possible capturing of a wider context with the hierarchical levels may be combined with machine learning methods to yield an approach for assessing the quality of MT systems.
Journal title :
Physica A Statistical Mechanics and its Applications
Serial Year :
2011
Journal title :
Physica A Statistical Mechanics and its Applications
Record number :
874050
Link To Document :
بازگشت