Title of article :
Exactly-solvable models derived from a generalized Gaudin algebra Original Research Article
Author/Authors :
R. Estrada and G. Ortiz، نويسنده , , R. Somma، نويسنده , , J. Dukelsky، نويسنده , , S. Rombouts، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
37
From page :
421
To page :
457
Abstract :
We introduce a generalized Gaudin Lie algebra and a complete set of mutually commuting quantum invariants allowing the derivation of several families of exactly solvable Hamiltonians. Different Hamiltonians correspond to different representations of the generators of the algebra. The derived exactly-solvable generalized Gaudin models include the Hamiltonians of Bardeen–Cooper–Schrieffer, Suhl–Matthias–Walker, Lipkin–Meshkov–Glick, the generalized Dicke and atom–molecule, the nuclear interacting boson model, a new exactly-solvable Kondo-like impurity model, and many more that have not been exploited in the physics literature yet.
Journal title :
Nuclear Physics B
Serial Year :
2005
Journal title :
Nuclear Physics B
Record number :
874375
Link To Document :
بازگشت