Abstract :
We point out that the non-critical version of the k-fractional superstring theory can be described by k-cut critical points of the matrix models. In particular, in comparison with the spectrum structure of fractional super-Liouville theory, we show that image minimal fractional superstring theories appear in the image-symmetry breaking critical points of the k-cut two-matrix models and the operator contents and string susceptibility coincide on both sides. By using this correspondence, we also propose a set of primary operators of the fractional superconformal ghost system which consistently produces the correct gravitational scaling critical exponents of the on-shell vertex operators.