Title of article :
Conformal blocks and generalized Selberg integrals Original Research Article
Author/Authors :
A. Mironov، نويسنده , , Al. Morozov، نويسنده , , And. Morozov، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Abstract :
Operator product expansion (OPE) of two operators in two-dimensional conformal field theory includes a sum over Virasoro descendants of other operator with universal coefficients, dictated exclusively by properties of the Virasoro algebra and independent of choice of the particular conformal model. In the free field model, these coefficients arise only with a special “conservation” relation imposed on the three dimensions of the operators involved in OPE. We demonstrate that the coefficients for the three unconstrained dimensions arise in the free field formalism when additional Dotsenko–Fateev integrals are inserted between the positions of the two original operators in the product. If such coefficients are combined to form an n-point conformal block on Riemann sphere, one reproduces the earlier conjectured β-ensemble representation of
Journal title :
Nuclear Physics B
Journal title :
Nuclear Physics B