Abstract :
I investigate the evolution of finite temperature, classical Yang-Mills field equations under the influence of a chemical potential for Chern-Simons number Ncs. The rate of Ncs diffusion,, Γd, and the linear response of Ncs to a chemical potential, Γμ, are both computed; the relation Γd = 2Γμ is satisfied numerically and the results agree with the recent measurement of Γd by Ambjørn and Krasnitz. The response of Ncs under chemical potential remains linear at least to μ = 6T, which is impossible if there is a free energy barrier to the motion of Ncs. The possibility that the result depends on lattice artefacts via hard thermal loops is investigated by changing the lattice action and by examining elongated rectangular lattices; provided that the lattice is fine enough, the result is weakly if at all dependent on the specifics of the cutoff. I also compare SU(2) with SU(3) and find ΓSU(3)∼ 7(αs/αw)4ΓSU(2).