Title of article :
Bailey flows and Bose-Fermi identities for the conformal coset models (A1(1))N × (A1(1))N′/(A1(1))N+N′ Original Research Article
Author/Authors :
Alexander Berkovich، نويسنده , , Barry M. McCoy، نويسنده , , Anne Schilling، نويسنده , , S. Ole Warnaar، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1997
Abstract :
We use the recently established higher-level Bailey lemma and Bose-Fermi polynomial identities for the minimal models M(p, p′) to demonstrate the existence of a Bailey flow from M(p, p′ ) to the coset models (A1(1))N × (A1(1))N′/(A1(1))N+N′ where N is a positive integer and N′ is fractional, and to obtain Bose-Fetmi identities for these models. The fermionic side of these identities is expressed in terms of the fractional-level Cartan matrix introduced in the study of M(p, p′). Possible relations between Bailey and renormalization group flow are discussed.
Keywords :
* Conformal Field Theory , * Branching functions , * Rogers-Ramanujan identities , * Bailey construction
Journal title :
Nuclear Physics B
Journal title :
Nuclear Physics B