Title of article :
Mirror symmetry and the web of Landau-Ginzburg string vacua Original Research Article
Author/Authors :
Hitoshi Sato، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1997
Pages :
19
From page :
660
To page :
678
Abstract :
We present some mathematical aspects of Landau-Ginzburg string vacua in terms of toric geometry. The one-to-one correspondence between toric divisors and some of the (−1, 1) states in the Landau-Ginzburg model is presented for superpotentials of typical types. The Landau-Ginzburg interpretation of non-toric divisors is also presented. Using this interpretation, we propose a method to solve the so-called “twisted sector problem” by orbifold construction. Moreover, this construction shows that the moduli spaces of the original Landau-Ginzburg string vacua and their orbifolds are connected. By considering the mirror map of the Landau-Ginzburg models, we obtain the relation between Mori vectors and the twist operators of our orbifoldization. This consideration enables us to argue the embedding of the Seiberg-Witten curve in the defining equation of the Calabi-Yau manifolds on which the type II string gets compactified. Related topics concerning the Calabi-Yau fourfolds and the extremal transition are discussed.
Keywords :
* Landau-Ginzburg model , * Mirror symmetry , * Calabi-Yau manifold , * Web of moduli spaces , * Toric geometry
Journal title :
Nuclear Physics B
Serial Year :
1997
Journal title :
Nuclear Physics B
Record number :
880322
Link To Document :
بازگشت