Title of article :
Non-Fermi-liquid behavior of impurity spins in the anisotropic Heisenberg chain Original Research Article
Author/Authors :
P. Schlottmann، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1999
Abstract :
We consider a U(1)-invariant model consisting of the integrable anisotropic Heisenberg chain of arbitrary spin S embedding an impurity of spin S′. The impurity is assumed located on the mth link of the chain and interacting only with both neighboring sites. The coupling of the impurity to the lattice can be tuned by the impurity rapidity. The model is then integrable as a function of two continuous parameters (the anisotropy and the impurity rapidity) and two discrete variables (the spins S and S′). The thermodynamic Bethe ansatz equations are derived and used to analyze the small field and low temperature properties. Three situations have to be distinguished: (i) If S′ = S the impurity just corresponds to one more site in the chain. (ii) If S′ > S the impurity spin is only partially compensated at T = 0 and the entropy has an essential singularity at T = H = 0. (iii) If S′ < S the impurity is overcompensated, and again the entropy has an essential singularity at T = H = 0. The essential singularity gives rise to a quantum critical point and hence non-Fermi-liquid-like behavior as H and T tend to zero. While cases (i) and (iii) are analogous to the n-channel Kondo problem, case (ii) differs considerably as a consequence of critical behavior induced by the anisotropy.
Journal title :
Nuclear Physics B
Journal title :
Nuclear Physics B