Title of article :
Integrable 2D Lorentzian gravity and random walks Original Research Article
Author/Authors :
P. Di Francesco، نويسنده , , E. Guitter، نويسنده , , C. Kristjansen، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Abstract :
We introduce and solve a family of discrete models of 2D Lorentzian gravity with higher curvature weight, which possess mutually commuting transfer matrices, and whose spectral parameter interpolates between flat and curved space-times. We further establish a one-to-one correspondence between Lorentzian triangulations and directed random walks. This gives a simple explanation why the Lorentzian triangulations have fractal dimension 2 and why the curvature model lies in the universality class of pure Lorentzian gravity. We also study integrable generalizations of the curvature model with arbitrary polygonal tiles. All of them are found to lie in the same universality class.
Keywords :
Lorentzian triangulations , Random walks , Quantum gravity , Integrable models
Journal title :
Nuclear Physics B
Journal title :
Nuclear Physics B