• Title of article

    Rodrigues formulas for the non-symmetric multivariable polynomials associated with the BCN-type root system Original Research Article

  • Author/Authors

    Akinori Nishino، نويسنده , , Hideaki Ujino، نويسنده , , Yasushi Komori، نويسنده , , Miki Wadati، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2000
  • Pages
    17
  • From page
    632
  • To page
    648
  • Abstract
    The non-symmetric Macdonald–Koornwinder polynomials are joint eigenfunctions of the commuting Cherednik operators which are constructed from the representation theory for the affine Hecke algebra corresponding to the BCN-type root system. We present the Rodrigues formula for the non-symmetric Macdonald–Koornwinder polynomials. The raising operators are derived from the realizations of the corresponding double affine Hecke algebra. In the quasi-classical limit, the above theory reduces to that of the BCN-type Sutherland model which describes many particles with inverse-square long-range interactions on a circle with one impurity. We also present the Rodrigues formula for the non-symmetric Jacobi polynomials of type BCN which are eigenstates of the BCN-type Sutherland model.
  • Keywords
    BCN-type root system , Cherednik operator , Affine Hecke algebra , Non-symmetric Macdonald–Koornwinder polynomial , Rodrigues formula
  • Journal title
    Nuclear Physics B
  • Serial Year
    2000
  • Journal title
    Nuclear Physics B
  • Record number

    882125