Title of article :
Rodrigues formulas for the non-symmetric multivariable polynomials associated with the BCN-type root system Original Research Article
Author/Authors :
Akinori Nishino، نويسنده , , Hideaki Ujino، نويسنده , , Yasushi Komori، نويسنده , , Miki Wadati، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Pages :
17
From page :
632
To page :
648
Abstract :
The non-symmetric Macdonald–Koornwinder polynomials are joint eigenfunctions of the commuting Cherednik operators which are constructed from the representation theory for the affine Hecke algebra corresponding to the BCN-type root system. We present the Rodrigues formula for the non-symmetric Macdonald–Koornwinder polynomials. The raising operators are derived from the realizations of the corresponding double affine Hecke algebra. In the quasi-classical limit, the above theory reduces to that of the BCN-type Sutherland model which describes many particles with inverse-square long-range interactions on a circle with one impurity. We also present the Rodrigues formula for the non-symmetric Jacobi polynomials of type BCN which are eigenstates of the BCN-type Sutherland model.
Keywords :
BCN-type root system , Cherednik operator , Affine Hecke algebra , Non-symmetric Macdonald–Koornwinder polynomial , Rodrigues formula
Journal title :
Nuclear Physics B
Serial Year :
2000
Journal title :
Nuclear Physics B
Record number :
882125
Link To Document :
بازگشت