• Title of article

    Percolation and magnetization in the continuous spin Ising model Original Research Article

  • Author/Authors

    Piotr Bialas، نويسنده , , Philippe Blanchard، نويسنده , , Santo Fortunato، نويسنده , , Daniel Gandolfo، نويسنده , , Helmut Satz، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2000
  • Pages
    11
  • From page
    368
  • To page
    378
  • Abstract
    In the strong coupling limit the partition function of SU(2) gauge theory can be reduced to that of the continuous spin Ising model with nearest neighbour pair-interactions. The random cluster representation of the continuous spin Ising model in two dimensions is derived through a Fortuin–Kasteleyn transformation, and the properties of the corresponding cluster distribution are analyzed. It is shown that for this model, the magnetic transition is equivalent to the percolation transition of Fortuin–Kasteleyn clusters, using local bond weights. These results are also illustrated by means of numerical simulations.
  • Keywords
    Gauge theories , Percolation , Fortuin–Kasteleyn transformation , Phase transition , Wolff algorithm
  • Journal title
    Nuclear Physics B
  • Serial Year
    2000
  • Journal title
    Nuclear Physics B
  • Record number

    882521