Title of article :
Macroscopic and microscopic (non-)universalityof compact support random matrix theory Original Research Article
Author/Authors :
G. Akemann، نويسنده , , G. Vernizzi، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Abstract :
A random matrix model with a σ-model like constraint, the restricted trace ensemble (RTE), is solved in the large-n limit. In the macroscopic limit the smooth connected two-point resolvent G(z,w) is found to be non-universal, extending previous results from monomial to arbitrary polynomial potentials. Using loop equation techniques we give a closed though non-universal expression for G(z,w), which extends recursively to all higher k-point resolvents. These findings are in contrast to the usual unconstrained one-matrix model. However, in the microscopic large-n limit, which probes only correlations at distance of the mean level spacing, we are able to show that the constraint does not modify the universal sine-law. In the case of monomial potentials V(M)=M2p, we provide a relation valid for finite-n between the k-point correlation function of the RTE and the unconstrained model. In the microscopic large-n limit they coincide which proves the microscopic universality of RTEs.
Keywords :
Microscopic universality , Macroscopic non-universality , Restricted trace ensemble , Large-N matrix model
Journal title :
Nuclear Physics B
Journal title :
Nuclear Physics B