Title of article :
Compactification of M(atrix) theory on noncommutative toroidal orbifolds Original Research Article
Author/Authors :
Anatoly Konechny، نويسنده , , Anatoli Konechny and Albert Schwarz، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Pages :
18
From page :
667
To page :
684
Abstract :
It was shown by A. Connes, M. Douglas and A. Schwarz that noncommutative tori arise naturally in consideration of toroidal compactifications of M(atrix) theory. A similar analysis of toroidal Z2 orbifolds leads to the algebra Bθ that can be defined as a crossed product of noncommutative torus and the group Z2. Our paper is devoted to the study of projective modules over Bθ (Z2-equivariant projective modules over a noncommutative torus). We analyze the Morita equivalence (duality) for Bθ algebras working out the two-dimensional case in detail.
Keywords :
Matrix theory , M-theory , Noncommutative geometry , Orbifolds
Journal title :
Nuclear Physics B
Serial Year :
2000
Journal title :
Nuclear Physics B
Record number :
882751
Link To Document :
بازگشت