Title of article :
Exact solutions of Dyson–Schwinger equations for iterated one-loop integrals and propagator-coupling duality Original Research Article
Author/Authors :
D.J. Broadhurst، نويسنده , , D. Kreimer، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
20
From page :
403
To page :
422
Abstract :
The Hopf algebra of undecorated rooted trees has tamed the combinatorics of perturbative contributions, to anomalous dimensions in Yukawa theory and scalar φ3 theory, from all nestings and chainings of a primitive self-energy subdivergence. Here we formulate the nonperturbative problems which these resummations approximate. For Yukawa theory, at spacetime dimension d=4, we obtain an integrodifferential Dyson–Schwinger equation and solve it parametrically in terms of the complementary error function. For the scalar theory, at d=6, the nonperturbative problem is more severe; we transform it to a nonlinear fourth-order differential equation. After intensive use of symbolic computation we find an algorithm that extends both perturbation series to 500 loops in 7 minutes. Finally, we establish the propagator–coupling duality underlying these achievements making use of the Hopf structure of Feynman diagrams.
Journal title :
Nuclear Physics B
Serial Year :
2001
Journal title :
Nuclear Physics B
Record number :
883070
Link To Document :
بازگشت