Title of article :
The reversing number of a diagraph Original Research Article
Author/Authors :
Jean-Pierre Barthélemy، نويسنده , , Olivier Hudry، نويسنده , , Garth Isaak، نويسنده , , Fred S. Roberts، نويسنده , , Barry Tesman، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1995
Pages :
38
From page :
39
To page :
76
Abstract :
A minimum reversing set of a diagraph is a smallest sized set of arcs which when reversed makes the diagraph acyclic. We investigate a related issue: Given an acyclic diagraph D, what is the size of a smallest tournament T which has the arc set of D as a minimun reversing set? We show that such a T always exists and define the reversing number of an acyclic diagraph to be the number of vertices in T minus the number of vertices in D. We also derive bounds and exact values of the reversing number for certain classes of acyclic diagraphs.
Journal title :
Discrete Applied Mathematics
Serial Year :
1995
Journal title :
Discrete Applied Mathematics
Record number :
884229
Link To Document :
بازگشت