Title of article :
Deterministic communication complexity of set intersection Original Research Article
Author/Authors :
Ulrich Tamm، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1995
Pages :
13
From page :
271
To page :
283
Abstract :
In this paper the communication complexity C(mn) of the cardinality of set intersection, mn say, will be determined up to one bit: n + ⌈log2(n + 1)⌉ − 1 ⩽ C(mn) ⩽ n + ⌈log2(n + 1)⌉. The proof for the lower bound can also be applied to a larger class of “sum-type” functions sharing the property that f(0,y) = f(x,0) = 0 for all possible x,y. Furthermore, using Kraftʹs inequality for prefix codes, it is possible to find a communication protocol, which for n = 2t, t ⩾ 2, assumes the lower bound. The upper bound is assumed for n = 2t − 1, t ϵ N.
Journal title :
Discrete Applied Mathematics
Serial Year :
1995
Journal title :
Discrete Applied Mathematics
Record number :
884273
Link To Document :
بازگشت