Title of article :
The algorithmic complexity of minus domination in graphs Original Research Article
Author/Authors :
Jean Dunbar، نويسنده , , Wayne Goddard، نويسنده , , Stephen Hedetniemi، نويسنده , , Alice McRae، نويسنده , , Michael A. Henning، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1995
Pages :
12
From page :
73
To page :
84
Abstract :
A three-valued function f defined on the vertices of a graph G = (V, E), f : V → {−1, 0, 1}, is a minus dominating function if the sum of its function values over any closed neighborhood is at least one. That is, for every v ϵ V, f(N[v]⩾1), where N[v] consists of v and every vertex adjacent to v. The weight of a minus dominating function is f(V) = ∑ f(v), over all vertices v ϵ V. The minus domination number of a graph G, denoted γ−(G), equals the minimum weight of a minus dominating function of G. The upper minus domination number of a graph G, denoted Γ−(G), equals the maximum weight of a minimal minus dominating function of G. In this paper we present a variety of algorithmic results. We show that the decision problem corresponding to the problem of computing γ− (respectively, Γ−) is NP-complete even when restricted to bipartite graphs or chordal graphs. We also present a linear time algorithm for finding a minimum minus dominating function in an arbitrary tree.
Journal title :
Discrete Applied Mathematics
Serial Year :
1995
Journal title :
Discrete Applied Mathematics
Record number :
884395
Link To Document :
بازگشت