Title of article :
The setup polyhedron of series-parallel posets Original Research Article
Author/Authors :
Rainer Schrader، نويسنده , , Georg Wambach، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1996
Pages :
9
From page :
213
To page :
221
Abstract :
To every linear extension L of a poset P = (P, <) we associate a 0, 1-vector x = x(L) with xe = 1 if and only if e is preceded by a jump in L or e is the first element in L. Let the setup polyhedron, S = conv{x(L): L ϵ L(P)} be the convex hull of the incidence vectors of all linear extensions of P. For the case of series-parallel posets we solve the optimization problem over S and give a linear description of S.
Keywords :
Bump number , Setup problem , Series-parallel posets , Polyhedral combinatorics , Jump number
Journal title :
Discrete Applied Mathematics
Serial Year :
1996
Journal title :
Discrete Applied Mathematics
Record number :
884652
Link To Document :
بازگشت