Title of article :
Separability generalizes Diracʹs theorem Original Research Article
Author/Authors :
Anne Berry، نويسنده , , Jean-Paul Bordat، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1998
Abstract :
In our study of the extremities of a graph, we define a moplex as a maximal clique module the neighborhood of which is a minimal separator of the graph. This notion enables us to strengthen Diracʹs theorem (Dirac, 1961): “Every non-clique triangulated graph has at least two non-adjacent simplicial vertices”, restricting the definition of a simplicial vertex; this also enables us to strengthen Fulkerson and Grossʹ simplicial elimination scheme; thus provides a new characterization for triangulated graphs.
Keywords :
Simplicial vertex , Minimal triangulation , LexBFS , Moplex , Perfect elimination ordering , Minimal separator
Journal title :
Discrete Applied Mathematics
Journal title :
Discrete Applied Mathematics