Title of article :
Hamiltonicity, diameter, domination, packing, and biclique partitions of Mycielskiʹs graphs Original Research Article
Author/Authors :
David C. Fisher، نويسنده , , Patricia A. McKenna، نويسنده , , Elizabeth D. Boyer، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1998
Pages :
13
From page :
93
To page :
105
Abstract :
Let ω(G), x(G), A(G), bp(G), diam(G), η(G), and γ(G) be the clique number, chromatic number, adjacency matrix, biclique partition number, diameter, packing number, and domination number of a connected graph G. Mycielski constructed a graph μ(G) with ω(μ(G)) = ω(G) and x(μ(G)) = x(G) + 1. We show: if G is Hamiltonian, then so is μ(G); if A(G) and A(G + v) (G + v is G joined with a vertex) are invertible, then so is A(μ(G)) and further bp(μ(G)) = ¦G¦ + 1; η(μ(G)) = η(G); γ(μ(G)) = γ(G) + 1; diam(μ(G)) = min(max(2, diam(G)), 4); and more.
Journal title :
Discrete Applied Mathematics
Serial Year :
1998
Journal title :
Discrete Applied Mathematics
Record number :
884744
Link To Document :
بازگشت