Author/Authors :
Edmund Ihler، نويسنده , , Gabriele Reich، نويسنده , , Peter Widmayer، نويسنده ,
Abstract :
We consider a generalized version of the Steiner problem in graphs, motivated by the wire routing phase in physical VLSI design: given a connected, undirected distance graph with required classes of vertices and Steiner vertices, find a shortest connected subgraph containing at least one vertex of each required class. We show that this problem is NP-hard, even if there are no Steiner vertices and the graph is a tree. Moreover, the same complexity result holds if the input class Steiner graph additionally is embedded in a unit grid, if each vertex has degree at most three, and each class consists of no more than three vertices. For similar restricted versions, we prove MAX SNP-hardness and we show that there exists no polynomial-time approximation algorithm with a constant bound on the relative error, unless P = NP. We propose two efficient heuristics computing different approximate solutions in time O(¦E¦+¦V¦log¦V¦) and in time O(c(¦E¦+¦V¦log¦V¦)), respectively, where E is the set of edges in the given graph, V is the set of vertices, and c is the number of classes. We present some promising implementation results. kw]Steiner Tree; Heuristic; Approximation complexity; MAX-SNP-hardness