Title of article :
On the Chvátal rank of polytopes in the 0/1 cube Original Research Article
Author/Authors :
Alexander Bockmayr، نويسنده , , Friedrich Eisenbrand، نويسنده , , Mark Hartmann، نويسنده , , Andreas S. Schulz، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1999
Pages :
7
From page :
21
To page :
27
Abstract :
Given a polytope P⊆Rn, the Chvátal–Gomory procedure computes iteratively the integer hull PI of P. The Chvátal rank of P is the minimal number of iterations needed to obtain PI. It is always finite, but already the Chvátal rank of polytopes in R2 can be arbitrarily large. In this paper, we study polytopes in the 0/1 cube, which are of particular interest in combinatorial optimization. We show that the Chvátal rank of any polytope P⊆[0,1]n is O(n3 log n) and prove the linear upper and lower bound n for the case P∩Zn=∅.
Journal title :
Discrete Applied Mathematics
Serial Year :
1999
Journal title :
Discrete Applied Mathematics
Record number :
884990
Link To Document :
بازگشت