Title of article :
Sparse orthogonal matrices and the Haar wavelet Original Research Article
Author/Authors :
Gi-Sang Cheon، نويسنده , , Bryan L. Shader، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Abstract :
The sparsity of orthogonal matrices which have a column of nonzeros is studied. It is shown that the minimum number of nonzero entries in such an m×m orthogonal matrix is(⌊lg m⌋+3)m−2⌊lg m⌋+1,where lg denotes the dyadic logarithm. Matrices achieving this level of sparsity are characterized, and related to orthogonal matrices arising from the Haar wavelet. The analogous sparsity problem for m×n row-orthogonal matrices which have a column of nonzeros is studied, and it is shown that the minimum number of nonzero entries in such a matrix with n′ nonzero columns is(⌊lg m⌋+3)m−2⌊lg m⌋+1+(n′−m).
Keywords :
Haar wavelet , Sparse orthogonal matrices
Journal title :
Discrete Applied Mathematics
Journal title :
Discrete Applied Mathematics