• Title of article

    Sparse orthogonal matrices and the Haar wavelet Original Research Article

  • Author/Authors

    Gi-Sang Cheon، نويسنده , , Bryan L. Shader، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2000
  • Pages
    14
  • From page
    63
  • To page
    76
  • Abstract
    The sparsity of orthogonal matrices which have a column of nonzeros is studied. It is shown that the minimum number of nonzero entries in such an m×m orthogonal matrix is(⌊lg m⌋+3)m−2⌊lg m⌋+1,where lg denotes the dyadic logarithm. Matrices achieving this level of sparsity are characterized, and related to orthogonal matrices arising from the Haar wavelet. The analogous sparsity problem for m×n row-orthogonal matrices which have a column of nonzeros is studied, and it is shown that the minimum number of nonzero entries in such a matrix with n′ nonzero columns is(⌊lg m⌋+3)m−2⌊lg m⌋+1+(n′−m).
  • Keywords
    Haar wavelet , Sparse orthogonal matrices
  • Journal title
    Discrete Applied Mathematics
  • Serial Year
    2000
  • Journal title
    Discrete Applied Mathematics
  • Record number

    885061