Title of article
The train marshalling problem Original Research Article
Author/Authors
Elias Dahlhaus، نويسنده , , Peter Horak، نويسنده , , Mirka Miller، نويسنده , , Joseph F. Ryan، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2000
Pages
14
From page
41
To page
54
Abstract
The problem considered in this paper arose in connection with the rearrangement of railroad cars in China. In terms of sequences the problem reads as follows: Train Marshalling Problem: Given a partition S of {1,…,n} into disjoint sets S1,…,St, find the smallest number k=K(S) so that there exists a permutation p(1),…,p(t) of {1,…,t} with the property: The sequence of numbers 1,2,…,n,1,2,…,n,…,1,2,…,n where the interval 1,2,…,n is repeated k times contains all the elements of Sp(1), then all elements of Sp(2),… , etc., and finally all elements of Sp(t). The aim of this paper is to show that the decision problem: “Given numbers n,k and a partition S of {1,2,…,n}, is K(S)⩽k?” is NP-complete. In light of this, we give a general upper bound for K(S) in terms of n.
Keywords
Partitions , NP-completeness , Numerical matching with target sums , Train rearrangement
Journal title
Discrete Applied Mathematics
Serial Year
2000
Journal title
Discrete Applied Mathematics
Record number
885093
Link To Document