• Title of article

    The train marshalling problem Original Research Article

  • Author/Authors

    Elias Dahlhaus، نويسنده , , Peter Horak، نويسنده , , Mirka Miller، نويسنده , , Joseph F. Ryan، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2000
  • Pages
    14
  • From page
    41
  • To page
    54
  • Abstract
    The problem considered in this paper arose in connection with the rearrangement of railroad cars in China. In terms of sequences the problem reads as follows: Train Marshalling Problem: Given a partition S of {1,…,n} into disjoint sets S1,…,St, find the smallest number k=K(S) so that there exists a permutation p(1),…,p(t) of {1,…,t} with the property: The sequence of numbers 1,2,…,n,1,2,…,n,…,1,2,…,n where the interval 1,2,…,n is repeated k times contains all the elements of Sp(1), then all elements of Sp(2),… , etc., and finally all elements of Sp(t). The aim of this paper is to show that the decision problem: “Given numbers n,k and a partition S of {1,2,…,n}, is K(S)⩽k?” is NP-complete. In light of this, we give a general upper bound for K(S) in terms of n.
  • Keywords
    Partitions , NP-completeness , Numerical matching with target sums , Train rearrangement
  • Journal title
    Discrete Applied Mathematics
  • Serial Year
    2000
  • Journal title
    Discrete Applied Mathematics
  • Record number

    885093