Title of article
On the fractal structure of the rescaled evolution set of Carlitz sequences of polynomials Original Research Article
Author/Authors
F. von HaeselerA. Barbé and F. von Haeseler، نويسنده , , Peitgen، نويسنده , , G. Skordev، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2000
Pages
21
From page
89
To page
109
Abstract
Self-similarity properties of the coefficient patterns of the so-called m-Carlitz sequences of polynomials are considered. These properties are coded in an associated fractal set – the rescaled evolution set. We extend previous results on linear cellular automata with states in a finite field. Applications are given for the sequence of Legendre polynomials and sequences associated with the zero Bessel function.
Keywords
Lucas property , self-similarity , Legendre polynomials , m-automaticity , Zero Bessel function
Journal title
Discrete Applied Mathematics
Serial Year
2000
Journal title
Discrete Applied Mathematics
Record number
885095
Link To Document