Title of article :
Partial monotonizations of Hamiltonian cycle polytopes: dimensions and diameters Original Research Article
Author/Authors :
Gerard Sierksma، نويسنده , , Ruud H. Teunter، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Pages :
10
From page :
173
To page :
182
Abstract :
In this paper we study partial monotonizations and level polytopes of the Hamiltonian Cycle Polytope, also called the symmetric Traveling Salesman Polytope. The kth Level Polytope is the convex hull of the characteristic vectors corresponding to sets of k edges in Kn that can be extended to Hamiltonian cycles (n⩾3). For 0⩽α⩽k, the α-monotonization of the kth Level Polytope is the convex hull of the characteristic vectors corresponding to sets of at least α and at most k edges in Kn that can be extended to Hamiltonian cycles (n⩾3). It is shown that for α
Keywords :
Traveling salesman polytope , Hamiltonian cycle polytope , Monotonization
Journal title :
Discrete Applied Mathematics
Serial Year :
2000
Journal title :
Discrete Applied Mathematics
Record number :
885133
بازگشت