Title of article :
Spatial pattern discovery by learning a probabilistic parametric model from multiple attributed relational graphs Original Research Article
Author/Authors :
Pengyu Hong، نويسنده , , Thomas S. Huang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Abstract :
This paper presents the methodology and theory for automatic spatial pattern discovery from multiple attributed relational graph samples. The spatial pattern is modelled as a mixture of probabilistic parametric attributed relational graphs. A statistic learning procedure is designed to learn the parameters of the spatial pattern model from the attributed relational graph samples. The learning procedure is formulated as a combinatorial non-deterministic process, which uses the expectation–maximization (EM) algorithm to find the maximum-likelihood estimates for the parameters of the spatial pattern model. The learned model summarizes the samples and captures the statistic characteristics of the appearance and structure of the spatial pattern, which is observed under various conditions. It can be used to detect the spatial pattern in new samples. The proposed approach is applied to unsupervised visual pattern extraction from multiple images in the experiments.
Keywords :
Spatial pattern discovery , Parametric attributed relational graph , EM algorithm , Attributed relational graph
Journal title :
Discrete Applied Mathematics
Journal title :
Discrete Applied Mathematics