Title of article :
Computing large planar regions in terrains, with an application to fracture surfaces Original Research Article
Author/Authors :
Michiel Smid، نويسنده , , Rahul Ray، نويسنده , , K Ulrich Wendt and Georg E Schulz، نويسنده , , Katharina Lange، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Abstract :
We consider the problem of computing the largest region in a terrain that is approximately contained in some two-dimensional plane. We reduce this problem to the following one. Given an embedding of a degree-3 graph G on the unit sphere S2, whose vertices are weighted, compute a connected subgraph of maximum weight that is contained in some spherical disk of a fixed radius. We give an algorithm that solves this problem in O(n2 log n(log log n)3) time, where n denotes the number of vertices of G or, alternatively, the number of faces of the terrain. We also give a heuristic that can be used to compute sufficiently large regions in a terrain that are approximately planar. We discuss an implementation of this heuristic, and show some experimental results for terrains representing three-dimensional (topographical) images of fracture surfaces of metals obtained by confocal laser scanning microscopy.
Keywords :
Computational geometry , Planar region , Terrain , Optimization
Journal title :
Discrete Applied Mathematics
Journal title :
Discrete Applied Mathematics