Title of article :
Blockade of CD86 Signaling Facilitates a Th2 Bias at the Maternal-Fetal Interface and Expands Peripheral CD4+CD25+ Regulatory T Cells to Rescue Abortion-Prone Fetuses1
Author/Authors :
Li، Da-Jin نويسنده , , Yuan، Min-Min نويسنده , , Wang، Ming-Yan نويسنده , , Zhu، Xiao-Yong نويسنده , , Zhou، Yue-Hua نويسنده , , Jin، Li-Ping نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Abstract :
Intervention in B7 (CD80/CD86)/B7-ligand (CD28/CTLA-4) pathways is an effective way of preventing unwanted immune responses, such as allograft rejection. Pregnancy maintenance represents maternal tolerance to the fetal allograft, which is accompanied by a type 2 helper cell (Th2) bias at the maternal-fetal interface. Here, the costimulatory signal of CD86 was selectively blocked, and that of CD80 was kept unimpaired by administration of anti-murine CD86 monoclonal antibody at the early gestational stage in abortion-prone CBA/JxDBA/2 matings and normal pregnant CBA/JxBALB/c matings. It was demonstrated that in vivo blockade of CD86 costimulation could suppress maternal immune attack to the fetus by shifting cytokines from Th1 predominance to Th2 bias at the maternal-fetal interface, and expanding peripheral CD4+CD25+ regulatory T cells, which play an important role in the development and maintenance of maternalfetal tolerance. Furthermore, the expression of CD28 and its ligands CD80/CD86 on peripheral lymphocytes was down-regulated, whereas that of CTLA-4 was up-regulated, which might facilitate the suppressive effect of CD4+CD25+ regulatory T cells on the alloreactive T cells. The maternal-fetal immunotolerance induced by CD86 blockade decreased fetal resorption in CBA/JxDBA/2 matings, but did not affect normal pregnant CBA/JxBALB/c matings. These results suggest that selective blockade of CD86 costimulation leads to maternal immune tolerance to embryo antigen, and might contribute to a rational immunoregulatory regimen for recurrent spontaneous abortion.
Keywords :
structure from motion , motion segmentation , dynamic scene reconstruction , computer vision
Journal title :
Biology of Reproduction
Journal title :
Biology of Reproduction