Title of article :
The inverse protein folding problem on 2D and 3D lattices Original Research Article
Author/Authors :
Piotr Berman، نويسنده , , Bhaskar DasGupta، نويسنده , , Felix Lazebnik and Dhruv Mubayi، نويسنده , , Robert Sloan، نويسنده , , Gy?rgy Tur?n، نويسنده , , Yi Zhang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
14
From page :
719
To page :
732
Abstract :
In this paper we investigate the inverse protein folding (IPF) problem under the Canonical model on 3D and 2D lattices [W.E. Hart, On the computational complexity of sequence design problems, Proceedings of the First Annual International Conference on Computational Molecular Biology 1997, pp. 128–136; E.I. Shakhnovich, A.M. Gutin, Engineering of stable and fast-folding sequences of model proteins, Proc. Natl. Acad. Sci. 90 (1993) 7195–7199]. In this problem, we are given a contact graph image of a protein sequence that is embeddable in a 3D (respectively, 2D) lattice and an integer image. The goal is to find an induced subgraph of G of at most K vertices with the maximum number of edges. In this paper, we prove the following results:
Keywords :
Lattice , Densest subgraph , Inverse protein folding , Canonical model , Approximation schemes
Journal title :
Discrete Applied Mathematics
Serial Year :
2007
Journal title :
Discrete Applied Mathematics
Record number :
886460
Link To Document :
بازگشت