Title of article :
Graphs, partitions and Fibonacci numbers Original Research Article
Author/Authors :
Arnold Knopfmacher، نويسنده , , Robert F. Tichy، نويسنده , , Stephan Wagner، نويسنده , , Volker Ziegler، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
13
From page :
1175
To page :
1187
Abstract :
The Fibonacci number of a graph is the number of independent vertex subsets. In this paper, we investigate trees with large Fibonacci number. In particular, we show that all trees with n edges and Fibonacci number >2n-1+5>2n-1+5 have diameter ⩽4⩽4 and determine the order of these trees with respect to their Fibonacci numbers. Furthermore, it is shown that the average Fibonacci number of a star-like tree (i.e. diameter ⩽4⩽4) is asymptotically View the MathML sourceA·2n·exp(Bn)·n3/4 for constants A,BA,B as n→∞n→∞. This is proved by using a natural correspondence between partitions of integers and star-like trees.
Keywords :
Partition , Fibonacci number , Star-like tree , Independent set
Journal title :
Discrete Applied Mathematics
Serial Year :
2007
Journal title :
Discrete Applied Mathematics
Record number :
886495
Link To Document :
بازگشت