Title of article :
Stability of two player game structures Original Research Article
Author/Authors :
Andreas Polyméris، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Abstract :
We have extended a two player game-theoretical model proposed by V. Gurvich [To theory of multi-step games, USSR Comput. Math and Math. Phys. 13 (1973)] and H. Moulin [The Strategy of Social Choice, North Holland, Amsterdam, 1983]: All the considered game situations are framed by the same game structure. The structure determines the families of potential decisions of the two players, as well as the subsets of possible outcomes allowed by pairs of such choices. To be a solution of a game, a pair of decisions has to determine a (pure) functional equilibrium of the situational pair of payoff mappings which transforms the realized outcome into real-valued rewards of the players. Accordingly we understand that a structure is stable, if it admits functional equilibria for all possible game situations; and that it is complete, if every situation that only partitions the potential outcomes, is dominated by one of the players. We have generalized and strengthened a theorem by V. Gurvich [Equilibrium in pure strategies, Soviet Math. Dokl. 38 (1989)], proving that a proper structure is stable iff it is complete. Additional results provide game-theoretical insight that focuses the inquiry on the complexity of the stability decision problem; in particular, for coherent structures.
Keywords :
Game form , Hypergraph transversal , Equilibrium , Stable structure , Duality problem , Polynomial reduction
Journal title :
Discrete Applied Mathematics
Journal title :
Discrete Applied Mathematics