Title of article :
Complexity results for minimum sum edge coloring Original Research Article
Author/Authors :
D?niel Marx، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
12
From page :
1034
To page :
1045
Abstract :
In the Minimum Sum Edge Coloring problem we have to assign positive integers to the edges of a graph such that adjacent edges receive different integers and the sum of the assigned numbers is minimal. We show that the problem is (a) NP-hard for planar bipartite graphs with maximum degree 3, (b) NP-hard for 3-regular planar graphs, (c) NP-hard for partial 2-trees, and (d) APX-hard for bipartite graphs.
Keywords :
Graph coloring , Minimum sum coloring , NP-completeness
Journal title :
Discrete Applied Mathematics
Serial Year :
2009
Journal title :
Discrete Applied Mathematics
Record number :
887041
Link To Document :
بازگشت