Title of article :
Transient film boiling under transient conditions related to vapor explosion (effects of transient flow and fragmentation under a shock pressure) Original Research Article
Author/Authors :
A. Inoue، نويسنده , , K. Takahashi، نويسنده , , M. Takahashi، نويسنده , , M. Matsuzaki، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1995
Abstract :
Two fundamental phenomena are significant when a shock pressure interacts with the large scale coarse mixing state. One is an intensive flow and the other is the surface area enhancement due to the disintegration of the hot drops. The effects of these phenomena on the transient heat transfer and behavior of vapor film under a shock pressure are investigated. Transient heat transfer of film boiling from an electrically heated platinum ribbon 2.5 mm wide and 0.15 mm thick was measured immediately after passage of a shock pressure from 0.1 to 0.7 MPa. The heater was set horizontally in a vertical shock tube which was filled with vapor liquid bubbly mixture and kept initially in the film boiling state. That is, the heater corresponds to a typical hot drop and the bubbles around it correspond to the coarse mixture around the drop. The liquid was Freon-113 with an initial void fraction in the range from 0 to 3%. When the shock wave arrives at the heater, intensive transient flow occurs due to collapse of bubbles around the heater. First, the effects of the initial void fraction, the intensity of the shock and the heated wall temperature on the transient heat fluxes and collapse of the vapor film were investigated experimentally and analytically under the shock pressure. Compared with a heated wall in the liquid alone, the transient heat flux at the heated wall increases and the collapse of the vapor film becomes easier in the bubbly mixture due to the transient flow. Effects of surface enhancement during the fragmentation process on the heat transfer rate and transient behavior of vapor film are investigated analytically by application of the newly proposed surface stretch model. It is made clear when the surface area is increasing, the vapor film is apt to collapse and the transient heat transfer is enhanced by the surface stretch.
Journal title :
Nuclear Engineering and Design Eslah
Journal title :
Nuclear Engineering and Design Eslah