Title of article :
Reactor pressure vessel structural integrity research Original Research Article
Author/Authors :
W.E. Pennell، نويسنده , , W.R. Corwin، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1995
Pages :
17
From page :
159
To page :
175
Abstract :
Development continues on the technology used to assess the safety of irradiation embrittled nuclear reactor pressure vessels (RPVs) containing flaws. Fracture mechanics tests on RPV steel, coupled with detailed elastic-plastic finite element analyses of the crack-tip stress fields, have shown that (1) constraint relaxation at the crack-tip of shallow surface flaws results in increased data scatter but no increase in the lower-bound fracture toughness, (2) the nil-ductility temperature (NDT) performs better than the reference temperature for nil-ductility transition (RTNDT) as a normalizing parameter for shallow flaw fracture toughness data, (3) biaxial loading can reduce the shallow flaw fracture toughness, (4) stress based dual-parameter fracture toughness correlations cannot predict the effect of biaxial loading on shallow flaw fracture toughness because in-plane stresses at the crack-tip are not influenced by biaxial loading, and (5) an implicit strain based dual-parameter fracture toughness correlation can predict the effect of biaxial loading on shallow flaw fracture toughness. Experimental irradiation investigations have shown that (1) the irradiation induced shift in Charpy V-notch vs. temperature behavior may not be adequate to conservatively assess fracture toughness shifts due to embrittlement, and (2) the wide global variations of initial chemistry and fracture properties of a nominally uniform material within a pressure vessel may confound accurate integrity assessments that require baseline properties.
Journal title :
Nuclear Engineering and Design Eslah
Serial Year :
1995
Journal title :
Nuclear Engineering and Design Eslah
Record number :
887876
Link To Document :
بازگشت