Author/Authors :
Sang Ki Moon، نويسنده , , Won Pil Baek، نويسنده , , Soon Heung Chang، نويسنده ,
Abstract :
Parametric trends of the critical heat flux (CHF) are analyzed by applying artificial neural networks (ANNs) to a CHF data base for upward flow of water in uniformly heated vertical round tubes. The analyses are performed from three viewpoints, i.e., for fixed inlet conditions, for fixed exit conditions, and based on local conditions hypothesis. Kattoʹs and Groeneveld et al. dimensionless parameters are used to train the ANNs with the experimental CHF data. The trained ANNs predict the CHF better than any other conventional correlations, showing RMS errors of 8.9%, 13.1% and 19.3% for fixed inlet conditions, for fixed exit conditions, and for local conditions hypothesis, respectively. The parametric trends of the CHF obtained from those trained ANNs show a general agreement with previous understanding. In addition, this study provides more comprehensive information and indicates interesting points for the effects of the tube diameter, the heated length, and the mass flux. It is expected that better understanding of the parametric trends is feasible with an extended data base.