Abstract :
This paper presents a constitutive model for uranium dioxide fuel pellets in light water reactor fuel rods. The proposed model accounts for the fuel mechanical behaviour under pellet cracking, fragment relocation and pellet-clad mechanical interaction. Moreover, the detrimental effect of cracking on the fuel thermal conductivity is considered in the model. An essential part of the model is the representation of pellet cracks, which significantly affect both the mechanical and thermal behaviour of nuclear fuel under operation. Cracking is modelled in a continuum context, where cracks are represented by nonelastic strains in the material. The continuum representation is particularly suitable for finite element computer codes, since cracking can be treated in the same manner as plasticity and creep. The model is derived in the form of a nonlinear constitutive relation for the fuel material, that may be implemented in either two- or three-dimensional finite element fuel performance computer codes. The fundamentals of the model are presented, and issues concerning its numerical implementation are discussed. The modelʹs ability to capture important aspects of the cracked fuel behaviour is also illustrated by comparisons with in-reactor experiments.