Title of article :
Intersection theory for o-minimal manifolds Original Research Article
Author/Authors :
Alessandro Berarducci، نويسنده , , Margarita Otero، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
33
From page :
87
To page :
119
Abstract :
We develop an intersection theory for definable Cp-manifolds in an o-minimal expansion of a real closed field and we prove the invariance of the intersection numbers under definable Cp-homotopies (p>2). In particular we define the intersection number of two definable submanifolds of complementary dimensions, the Brouwer degree and the winding numbers. We illustrate the theory by deriving in the o-minimal context the Brouwer fixed point theorem, the Jordan-Brouwer separation theorem and the invariance of the Lefschetz numbers under definable Cp-homotopies. A. Pillay has shown that any definable group admits an abstract manifold structure. We apply the intersection theory to definable groups after proving an embedding theorem for abstract definably compact Cp-manifolds. In particular using the Lefschetz fixed point theorem we show that the Lefschetz number of the identity map on a definably compact group, which in the classical case coincides with the Euler characteristic, is zero.
Keywords :
o-minimality
Journal title :
Annals of Pure and Applied Logic
Serial Year :
2001
Journal title :
Annals of Pure and Applied Logic
Record number :
889753
Link To Document :
بازگشت