• Title of article

    Embeddings of N5 and the contiguous degrees Original Research Article

  • Author/Authors

    Klaus Ambos-Spies، نويسنده , , Peter A. Fejer، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2001
  • Pages
    38
  • From page
    151
  • To page
    188
  • Abstract
    Downey and Lempp (J. Symbolic Logic 62 (1997) 1215–1240) have shown that the contiguous computably enumerable (c.e.) degrees, i.e. the c.e. Turing degrees containing only one c.e. weak truth-table degree, can be characterized by a local distributivity property. Here we extend their result by showing that a c.e. degree a is noncontiguous if and only if there is an embedding of the nonmodular 5-element lattice View the MathML source into the c.e. degrees which maps the top to the degree a. In particular, this shows that local nondistributivity coincides with local nonmodularity in the computably enumerable degrees.
  • Keywords
    Computably enumerable , Degree , Contiguous , Distributive , Lattice embedding , Modular
  • Journal title
    Annals of Pure and Applied Logic
  • Serial Year
    2001
  • Journal title
    Annals of Pure and Applied Logic
  • Record number

    889808