Title of article
Embeddings of N5 and the contiguous degrees Original Research Article
Author/Authors
Klaus Ambos-Spies، نويسنده , , Peter A. Fejer، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2001
Pages
38
From page
151
To page
188
Abstract
Downey and Lempp (J. Symbolic Logic 62 (1997) 1215–1240) have shown that the contiguous computably enumerable (c.e.) degrees, i.e. the c.e. Turing degrees containing only one c.e. weak truth-table degree, can be characterized by a local distributivity property. Here we extend their result by showing that a c.e. degree a is noncontiguous if and only if there is an embedding of the nonmodular 5-element lattice View the MathML source into the c.e. degrees which maps the top to the degree a. In particular, this shows that local nondistributivity coincides with local nonmodularity in the computably enumerable degrees.
Keywords
Computably enumerable , Degree , Contiguous , Distributive , Lattice embedding , Modular
Journal title
Annals of Pure and Applied Logic
Serial Year
2001
Journal title
Annals of Pure and Applied Logic
Record number
889808
Link To Document