Title of article :
Observational ultraproducts of polynomial coalgebras Original Research Article
Author/Authors :
Robert Goldblatt، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
56
From page :
235
To page :
290
Abstract :
Coalgebras of polynomial functors constructed from sets of observable elements have been found useful in modelling various kinds of data types and state-transition systems. This paper continues the study of equational logic and model theory for polynomial coalgebras begun in Goldblatt (in: Advances in Modal Logic, vol. 4, 2001, to appear), where it was shown that Boolean combinations of equations between terms of observable type form a natural language of observable formulas for specifying properties of polynomial coalgebras, and for giving a Hennessy–Milner style logical characterisation of observational indistinguishability (bisimilarity) of states. Here we give a structural characterisation of classes of coalgebras definable by observable formulas. This is an analogue for polynomial coalgebras of Birkhoffʹs celebrated characterisation of equationally definable classes of abstract algebras as being those closed under homomorphic images, subalgebras, and direct products. The coalgebraic characterisation involves new notions of observational ultraproduct and ultrapower of coalgebras, obtained from the classical construction of ultraproducts by deleting states that assign “nonstandard” values to terms of observable type. A class of polynomial coalgebras is shown to be the class of all models of a set of observable formulas if, and only if, it is closed under images of bisimulation relations, disjoint unions and observational ultrapowers. Observational ultraproducts are also used to discuss compactness—which holds only under limited conditions; to characterise finitely, axiomatisable classes of polynomial coalgebras; and to show that there are axiomatisable classes that are not finitely axiomatisable.
Keywords :
Coalgebra , Polynomial functor , Birkhoffיs variety theorem , Ultraproduct
Journal title :
Annals of Pure and Applied Logic
Serial Year :
2003
Journal title :
Annals of Pure and Applied Logic
Record number :
889920
Link To Document :
بازگشت