Title of article :
Accurate discretization of a non-linear micromagnetic problem Original Research Article
Author/Authors :
P.B. Monk، نويسنده , , O. Vacus، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Abstract :
In this paper we propose a finite element discretization of the Maxwell–Landau–Lifchitz–Gilbert equations governing the electromagnetic field in a ferromagnetic material. Our point of view is that it is desirable for the discrete problem to possess conservation properties similar to the continuous system. We first prove the existence of a new class of Liapunov functions for the continuous problem, and then for a variational formulation of the continuous problem. We also show a special continuous dependence result. Then we propose a family of mass-lumped finite element schemes for the problem. For the resulting semi-discrete problem we show that magnetization is conserved and that semi-discrete Liapunov functions exist. Finally we show the results of some computations that show the behavior of the fully discrete Liapunov functions.
Journal title :
Computer Methods in Applied Mechanics and Engineering
Journal title :
Computer Methods in Applied Mechanics and Engineering