Title of article :
An alternating iterative algorithm for the Cauchy problem associated to the Helmholtz equation Original Research Article
Author/Authors :
L. Marin، نويسنده , , L. Elliott، نويسنده , , P.J. Heggs، نويسنده , , D.B. Ingham، نويسنده , , D. Lesnic، نويسنده , , X. Wen، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
14
From page :
709
To page :
722
Abstract :
In this paper, the iterative algorithm proposed by Kozlov et al. [Comput. Maths. Math. Phys. 31 (1991) 45] for obtaining approximate solutions to the ill-posed Cauchy problem for the Helmholtz equation is analysed. The technique is then numerically implemented using the boundary element method (BEM). The numerical results confirm that the iterative BEM produces a convergent and stable numerical solution with respect to increasing the number of boundary elements and decreasing the amount of noise added into the input data. An efficient stopping regularising criterion is also proposed.
Keywords :
Iterative BEM , Cauchy problem , Helmholtz equation , Inverse problem
Journal title :
Computer Methods in Applied Mechanics and Engineering
Serial Year :
2003
Journal title :
Computer Methods in Applied Mechanics and Engineering
Record number :
892708
Link To Document :
بازگشت