Title of article :
Relecture constructive de la théorie dʹArtin-Schreier
Original Research Article
Author/Authors :
Henri Lombardi ، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1998
Abstract :
We introduce the notion of “Dynamic Algebraic Structure” (DAS) inspired by Dynamic Evaluation (in computer algebra) and Model Theory. We show that this constructive notion allows a rereading of the Artin-Schreier-Robinson solution for the 17th Hilbert Problem. So, once we know how to reread the proofs, this kind of abstract theory contains an algorithm which computes the concrete result (here, the sum of squares required by Hilbert). Our method gives a constructive semantic for certain parts of abstract classical mathematics.
The idea is the following: replace the classical algebraic structures “constructed” by Choice and Principle of Third Excluded Middle (TEM), by DAS and dynamic evaluations of these DAS. Then TEM is replaced by construction of branching in the trees of dynamic evaluation of the DAS. If Choice is used in the form of Godel completeness theorem, it is not really necessary to use it for obtaining concrete results: in DAS, Choice is simply replaced by … nothing!. This is because the classical proof is by contradiction: “if there were not a sum of squares then some formal theory would admit a pathological model”. The constructive reasoning is more direct: since the pathological theory proves 0 = 1 we know how to construct the sum of squares … and classical models have disappeared in the proof. They are replaced by dynamic evaluations of DAS. We think that we have given, for an academic example, a new method, realizing a kind of Hilbert Program for significant parts of classical algebra.
Keywords :
Hilbert program , 17th Hilbert problem , Dynamic evaluation , Constructive mathematics , Artin-Schreier theory , Ordered fields , Real fields , Sums of squares , Real closed fields
Journal title :
Annals of Pure and Applied Logic
Journal title :
Annals of Pure and Applied Logic